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Introduction

Computer simulations in the post-genomic era
High-throughput genotyping and next-gen-

eration sequencing technologies are providing 
unprecedented opportunities to detect signals of 
our evolutionary history in the human genome, 
opening new avenues for molecular anthropolo-
gists (Destro Bisol et al., 2010). 

Dense panels of SNP (Single Nucleotide 
Polymorphism) and STR (Short Tandem Repeats) 
markers as well as high coverage DNA sequences 
are now available for multiple individuals. The 
entire genome has started to be sequenced at 
population level (The 1000 Genomes Project 
Consortium,  2010) and the data are being assem-
bled to reconstruct the finest-grained genetic pic-
ture of our demographic and evolutionary history.

The design of efficient tools that can manage 
the size of next-generation data is an urgent mat-
ter. Nevertheless, when tracing the causes of mod-
ern genetic variation, several sources of error are 
likely to intervene, which the increasing amount 
of information units can hardly prevent. For 
example, the most recent events might obscure 
ancient signatures. Secondly, when many factors 

are concurrently acting, it is extremely difficult to 
disentangle causes and effects. Thirdly, different 
processes can produce similar patterns.

In order to lower the risk of either a specula-
tive or erroneous interpretation of the results, the 
whole available array of evidence regarding pop-
ulations should be analyzed using statistical tools 
that can manage the complexity of the interac-
tions. Hence, only systemic approaches network-
ing a wide spectrum of disciplines other than 
population genetics (i.e. anthropology, history, 
paleo-ecology, linguistics, archeology among 
others) have the potential to provide a valid clue. 
This introduces further complexity in the hard 
task of selecting a hypothesis among a spectrum 
of possible hypotheses that could be tested.

A basic contribution in managing all this 
plus-value complexity is given by “in silico” 
experiments,  such as computer simulations 
(Kitano, 2002). Properly designed simulations 
could be exploratory, checking the adequacy of 
the experimental design to research aims before 
performing new experiments or analyses. For 
instance, simulating datasets with a variable 
number of loci might help determine the mini-
mum set of markers that must be genotyped in 
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order to discriminate between scenarios with dif-
fering time depths.

Alternatively, simulations could be explana-
tory. Simulated distributions under a given set of 
computable evolutionary parameters could form 
the theoretical framework upon which to test the 
consistency of either the experimental evidence 
or the method used to interpret it. For example, 
one could simulate the performance of differ-
ent estimators under a given model (parameter-
varying approach, i.e: Takezaki & Nei 2008) or 
among competing models establish the one that 
best explains a given dataset (model-varying 
approach, i.e. Fagundes et al., 2007).

A third target of simulation computing is 
predictive, giving possible insights into future 
evolutionary processes. This aspect has been 
extensively applied to ecological and climatic 
contexts at a global scale but rarely to the genetic 
evolution of the human species.

An additional and valuable contribution of 
simulations is in learning approaches, whenever 
there is the need to explore the relationships 
between variables of a mathematical function, or 
for educational tasks.

The role of NRUP markers
Haploid non recombinant uni-parentally 

inherited (NRUP) markers, as variants of the plas-
tid genomes (mitochondria and chloroplasts) and 
large segments of vertebrate sex heterochromo-
somes (Y and W), are widespread validated tools 
for phylogenetic/historical reconstructions, life 
management and forensic analyses (Moritz et al., 
1987; Jobling & Tyler-Smith, 2003; Lowe et al., 
2004; Sala et al., 2004; Avise, 2004) whose data are 
treated and stored in a multilocus haplotype for-
mat. The reason behind the success in using hap-
lotypes with uni-parental inheritance is either his-
torical, due to the ease in extracting and sequencing 
plastid DNAs, and theoretical, as lineages branch-
ing along gene genealogies can be unambiguously 
traced. The fact that their effective size is one fourth 
that of markers with diploid bi-parental inherit-
ance is a double-faced issue. It makes NRUPs a 
highly sensitive tool in detecting genetic introgres-
sion, in estimating divergence times or evaluating 

stochastic events such as bottlenecks, founder 
effects and population divergence due to genetic 
drift. However, it can enhance the role of drift 
compared  to other demographic events.

Since the pioneering studies of Cann et al. 
(1987) on the genealogy of the mitochondrial 
hypervariable region (HVSI) and of Underhill 
et al. (2000) on the genealogy of unique muta-
tional events at the non recombining region of 
the Y chromosome (NRY), NRUP haplotypes 
have been shown to be highly informative poly-
morphisms which can trace back the pathway 
of human evolution at different temporal and 
spatial scales. Moreover, NRUP sequences from 
animal and plant plastid genomes have been the 
basic, and sometimes unique, reference data for 
ancient DNA studies. Despite their limitations 
due to the large variance associated with  infer-
ences based on one locus only, the advent of the 
genomic era could have difficulty in replacing 
NRUP data when reconstructing the backbone 
processes on the male and female side of human 
evolution. Neither, could the overall neutrality 
and high sensitivity to drift and migration of 
NRUPs be ignored in any attempt to reconstruct 
recent demographic scenarios.

Publicly accessible databases of human 
mtDNA sequences currently host 12,247 
HVSI-II haplotypes with 1,013 variants 
(EMPOP v2.1.3, MITOMAP r13) and a total 
of 5,344 complete sequences with 3,049 hap-
lotype variants and 9,280 variant sites (NCIB 
, MITOMAP r13, HmtDB). Whole-genome 
sequencing has recently discovered 2,870 vari-
able Y-SNPs in just 77 males from 3 continents 
(The 1000 Genomes Project Consortium, 
2010), with a reasonable final score in the order 
of tens thousands YSNPs, and forensic databases 
host up to 97,575 Y-STR haplotypes (YHRD 
r37). The high rate at which novel variants are 
discovered ensure that all existing branches of 
NRUP genealogies will soon be discovered, thus 
generating new fascinating hypotheses on the 
historical relationships among human popula-
tions. Despite what have been mentioned above, 
few dedicated programs have been designed to 
model the evolution of NRUP haplotype data.
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Aims

The present paper is a brief comparative and 
annotated overview on the simulators that have 
been recently developed in the field of popula-
tion genetics which can be confidently applied to 
large NRUP data in order to test hypotheses on 
the forces that shaped human genetic variation.

Drawbacks and advantages of backward and 
forward strategies are discussed and the perfor-
mance of selected applications from each class of 
programs are evaluated according to criteria of 
time efficiency  and ease of use.  

We aim to provide  a basic guideline which 
can introduce non-programmer users interested 
in human genetic history to computer simula-
tion tools.

Backward- and forward-in-time 
algorithms

Several applications which make it possible 
to simulate the virtual evolution of haploid DNA 
sequences under different scenarios are currently 
available (for a review see Carvajal-Rodríguez, 
2008a, 2010). A first-order classification subdi-
vides them into programs implementing back-
ward-in-time (BiT) and forward-in-time (FiT) 
algorithms.

Most of the available applications are BiT, 
based on the standard coalescent model formerly 
developed by Kingman (1982) or modified ver-
sions. Their popularity is largely due to their  com-
putational efficiency, which makes it possible to 
simulate large haplotype data sets (e.g. many loci 
and individuals) very quickly. Simulating accord-
ing to the coalescent model means following back 
the genealogy of a sample of unknown genotype 
“coalescing” individuals according to a stochastic 
process that depends on evolutionary parameters 
such as effective size and migration. 

In its simplest version, the coalescent theory 
assigns the same probability to yield descendants 
to all the members of the genealogy (selective 
neutrality). The genealogical and the mutational 
processes are separable: after the most recent 

common ancestor (MRCA) of all the sampled 
individuals is found, the process runs forward in 
time and randomly assigns genetic information 
to individuals and lineages on the coalescent tree. 

Mathematically, the Kingman coalescent, 
or n-coalescent, is a stochastic Markov process 
composed of n-1 independent, random, Poisson-
distributed collisions of lineages, given an initial 
sample size n, a population size N tending to 
infinity and a time in generations rescaled by θ 
(for haploid data θ=2µNe, where Ne=effective size 
and µ=mutation rate). It has been shown to hold 
for a surprisingly wide variety of population mod-
els (Kingman, 1982; Fu 2006), including more 
realistic reproductive models such as the Moran 
and the Wright-Fisher (W-F) models, although it 
can be considered a good approximation of the 
latter only when the sample size is much smaller 
than the population effective size (n«Ne).

It is reasonable to presume that, a low n/Ne 
ratio will not occur in a near future, when appli-
cations face genome-wide panels from thousands 
of individuals. However, empirical cases with n 
dominating over Ne can already be found when 
genotyping the mtDNA control region and the 
NRY of the human genome. As reported above, 
there are respectively 12,247 and 97,575 cur-
rently available NRUP haplotypes, while long-
term human Ne is estimated in the order of 2.5-8 
thousand (Takahata et al., 1995; Ingman et al., 
2000; Thomson et al., 2000). 

Nonetheless, the coalescent theory provides 
a well-suited approach in analytically inferring 
gene genealogies from the data using simple evo-
lutionary models. It makes it possible to compute 
fundamental parameters in population genetics 
such as the time to coalescence of a number of 
alleles/lineages (with both, expected value and 
standard deviation, equal to 2Ne) or the amount 
of variation expected from genetic drift alone 
(i.e. the mean heterozygosity that depends on θ).

In cases of more complex demographic scenar-
ios, when analytical results are not accessible, appli-
cations implementing the coalescent model offer 
the opportunity to simulate genetic data to explore 
the effects of demographic parameters such as sub-
division, size fluctuation, and migration.
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Sophisticated strategies in computational sta-
tistics have been recently developed which, once 
coupled to the coalescent, offer a framework to 
maximize the extraction of the information con-
tained in the data even under complex demo-
graphic models. 

The Bayesian statistical paradigm, for 
instance, makes it possible to calculate the dis-
tribution of a parameter given the observed 
data (Posterior distribution) as the probabil-
ity to obtain the data under a certain model 
(Likelihood) multiplied by the uncertainty of 
the parameter distribution based on the knowl-
edge available before looking at the data (Prior 
distribution). In practice, it makes it possible to 
start with some previous beliefs (prior) about the 
population parameter we are investigating and 
modify those beliefs with empirical data to make 
new inferences on the history of the population 
(posterior). Three steps are intimately linked 
when implementing the Bayesian paradigm in 
a program. First, models are built using back-
ground information. Then, the models are fit 
to the data by using simulations to calculate the 
posterior probability distribution and credible 
intervals for the parameter of interest. Finally, 
the goodness-of-fit of the conditional distribu-
tions between alternative models is evaluated. 

Because more solid conclusions can be drawn 
when empirical data-sets are much more inform-
ative to the point that the likelihood dominates 
over prior knowledge, the Bayesian inference will 
benefit from the current exponential rate of data 
growing. Independent of the amounts of empiri-
cal data, however, strong prior distributions (i.e. 
with small variance) have a large influence on the 
posterior distribution and, hence, on the final 
inference regarding  population history. Thus, 
situations where there are large amounts of new 
data and weak priors will make the best use of 
the Bayesian framework in the near future.   

Markov chain Monte Carlo computational 
models (MCMC, Nielsen & Wakeley, 2001) are 
a class of algorithms which simplify the calcula-
tion of posterior distribution. They search for the 
set of parameters which give a maximum a poste-
riori probability under a given model by iteratively 

generating samples from the posterior distribu-
tion until a convergence state is reached. Point 
estimates and credible intervals can be calculated 
for any deterministic function of the underly-
ing parameters so that they can be used under a 
Bayesian framework to simulate gene genealogies 
under virtually any demographic model.

Unfortunately, the more realistic the model, 
the more computationally intensive it is to cal-
culate the likelihood function analytically. This 
is why likelihood-free computational methods 
have been explored and applied in recent years. 
One of these families of algorithms is known 
as Approximate Bayesian Computation (ABC, 
Beaumont et al.,, 2002; Marjoram et al.,, 2003; 
Sisson et al.,, 2007; Csillery et al., 2010; Bertorelle 
et al., 2010). ABC replaces the exact computation 
of the likelihood function with an approximate 
version obtained by using summary statistics 
and simulations under the model. In synthesis, 
among the millions of genealogies obtained by 
simulating under different models, those produc-
ing the variation which is closest to the observed 
data are selected to estimate the posterior distri-
bution of the parameter/s. The criteria of selec-
tion of the simulated data are crucial. They are 
usually based on the distance between summary 
statistics computed in real and simulated data-
sets and the cutoff of those data which are lower 
than an appropriate threshold ε. To date, there is 
no consensus on the best choice of ε or the best 
methods to explore the parameter space and the 
proper number of summary statistics. They are, 
in fact, case-dependent. Manual adjustments and 
careful controls of the various steps are needed to 
achieve good results. The accuracy of the infer-
ences (model checking) should often be validated 
by the user with the help of statistical tools which 
are not implemented in the same application with 
the simulator.

An additional but not trivial drawback of BiT 
simulations is that evolutionary processes that 
need a population level to be fully understood 
(i.e. the fate of rare variants) or non random sam-
pling, such as selection, cannot be treated unless 
confining them into a very specific context (i.e. 
strong positive selection, Kaplan et al., 1988). In 
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case of selection, the assumption of the standard 
coalescent that individuals have the same prob-
ability of yielding descendants does not hold 
because the reproductive success depends on the 
alleles/haplotypes codified in each genome.

A strategy implemented in SELSIM (Spencer 
& Coop, 2004), for instance, bypasses the 
indetermination regarding the transmission of 
selected alleles from ancestors to descendants 
inherent to the coalescent process by admitting 
the conditional reversibility between the back-
ward trajectory of an allele from the present 
state to a frequency x and the forward x-to-loss 
trajectory of the same allele. A similar approach 
is developed in MSMS (Ewing & Hermisson, 
2010), which extends the performance of MS to 
the case of selection at a single-locus with two 
alleles using a three-step procedure that assumes 
forward and  backward conditional processes. 

Another limit might be the fact that the most 
popular applications that implement Bayesian 
computations, and in particular ABC, are not 
user-friendly. Efforts towards friendliness are 
being performed: non-standard ABC have 
become available for general users within the set 
of programs called ABCTOOLBOX (Wegmann 
et al., 2010); recent graphical tools such as M4S2 
(Antao et al., 2007), REJECTOR (Jobin & 
Mountain, 2008) and DIYABC (Cornuet et al., 
2008) have been developed to provide a more 
friendly interface for existing programs.

Usually, ABC steps are not fully integrated with 
the simulator and it is necessary to pipeline two or 
more algorithms to complete the analysis. For par-
ticularly complex models, ABCs require millions 
of replications to reach convergence, if there is any, 
thus decreasing the time efficiency of BiT simula-
tions, unless one resorts to big CPU clusters.

Forward simulations model the evolution of 
all the sequences contained in a given ancestral 
population. The properties of the initial popula-
tion are followed generation by generation under 
a certain set of genetic or demographic condi-
tions and the final sample can be considered as 
being representative of either the current or the 
forthcoming population. As a general rule, every 
member of a generation can yield descendants 

following random sampling probabilities 
(Wright–Fisher model). Access to every indi-
vidual which forms every generation through the 
history of the population makes it easy modify 
demographic (size, migrants) and evolutionary 
(mutation rates, probabilities of having descend-
ants) variables. It is also easier to model processes 
determined by population sub-structures. 

The higher performance in flexibility and 
accuracy makes them an ideal tool to approach 
the complexity of evolutionary pathways actually 
followed by real populations. In fact, unlike basic 
Bit approaches, FiT strategies allow for a wider 
range of demographic scenarios to be tested as 
null hypothesis. What is more, the uncertainty 
due to the number of possible trajectories of a 
backward induction process is reduced and the 
design of predictive models is allowed.

The main limitation when simulating FiT 
is the intensive computational effort required: 
the more complex the model or the larger the 
loci x chromosomes product (LC-grid), the 
longer the runtime. Some programs have incor-
porated strategies to shortcut simulation times. 
GENOMEPOP (Carvajal-Rodríguez, 2008b) 
and FREEGENE (Hoggart et al., 2007) scale 
the population size N and the time t provided 
to keep the products Nμ, Nm constant. Using 
a 10-fold re-scaling implies that N and t should 
be divided by 10, introducing de facto a sampling 
error to the final estimates, while mutation and 
migration rates should be multiplied by the same 
factor. In ASHEs (Merlitti & Tofanelli, 2009) 
and EASYPOP (Balloux, 2001), the computer 
code has been designed for a more efficient use of 
the memory. Even using an optimized software, 
however, simulation designs with thousands of 
iterations and large LC-grids (>1 M) over hun-
dreds of generations require too much time with-
out access to distributed computing systems.

Comparing features and performance 
of available programs

The landscape of the simulation software avail-
able to population geneticists has been exhaustively 
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reviewed by Carvajal-Rodríguez (2008a, 2010). 
The ideal case for handling haploid genomes is a 
program that can manage NRUP haplotypes in 
order to mimic the complexity of human genetic 
history at a global as well as at a regional scale, over 
large genomic regions, in a time-efficient way, 
using an easy-to-use interface. Such a program is 
not yet available today.

Here, we have selected the applications 
that most closely approach that case: MS 
(Hudson, 2002), BAYESSC (Anderson et al., 
2005), SIMCOAL (Laval & Excoffier, 2004), 
FASTSIMCOAL (Excoffier & Foll, 2011), 
POPABC (Lopes et al., 2009) simulating 
BiT; EASYPOP and ASHEs simulating FiT. 
Separately or concurrently, they can be confi-
dently applied to large NRUP data in order to 
reliably test hypotheses on human genetic evolu-
tion. Each program can be preparatory either to 
test alternative demographic histories, by com-
paring randomized replicates of user-specified 
models with empirical data, or to model the evo-
lution of specific parameters. 

A synopsis of the features and performance 
of the selected applications are provided in 
Appendix. The most popular BiT simulator is 
MS, a powerful and fast sampler that simulates 
genealogies under any neutral demography (sub-
division, divergence, constant size, growth, bottle-
necks) once a user-defined population mutation 
rate (θ) is given. As in most coalescent simulators, 
the output is software-specific, but it can be piped 
into SEQGEN (Rambaut & Grassly, 1997) to 
generate sequences in a NEXUS format or into 
MLCOALSIM (Ramos-Onsins & Mitchell-Olds, 
2007) to construct sample sequences in FASTA 
format and calculate several neutrality tests. All 
the above are command line programs that should 
be compiled on a UNIX system.

Only ASHEs, SIMCOAL, FASTSIMCOAL 
and BAYESSC are conceived to handle data 
directly in a NRUP format, namely binary or 
multistate multilocus haplotypes without recom-
bination across loci. The other applications have 
options to arbitrarily set the recombination rate 
and the ploidy level but the outputs are often 
given in an unfriendly format. This further 

affects the computational time required to post-
process the data, which sometimes can be so 
slow that it becomes untreatable with a common 
hardware platform. 

BAYESSC, FASTSIMCOAL and SIMCOAL 
are largely inter-exchangeable applications under 
different variants of the coalescent. They differ 
from POPABC and MS in the array of usable 
markers (i.e. POPABC cannot simulate binary 
data such as SNPs or RFLPs, MS cannot sim-
ulate STR data), in the settable input param-
eters and in output options (see Appendix). 
BAYESSC, which is a Bayesian version of 
SERIALSIMCOAL, and FASTSIMCOAL are 
the only applications able to add ancient DNA 
sequences to simulation parameters. POPABC 
is a package of algorithms which implements 
an ABC framework under an Isolation with 
Migration model (Nielsen & Wakeley, 2001; 
Beaumont & Nichols, 1996).

Also EASYPOP and ASHEs have comple-
mentary functions. EASYPOP does not manage 
DNA sequence formats and returns less output 
variables but it implements a larger number of 
migration and mutation models. ASHEs is limited 
to models involving only one or two populations/
demes but is able to manage all data types and a 
wider number of variables (growth rates, non ran-
dom sampling probabilities, distance measures). 
Thanks to its interactive graphical user interface, 
which makes it possible to visually monitor the 
output of each variable in real time, ASHEs is the 
program having the easiest-to-use interface and, 
hence, is the most suitable for educational tasks.

In order to test the performance of the algo-
rithms implemented in the available simulation 
programs under different conditions, the outputs 
of simulations performed by applications under 
the same model were compared.  Among the 
various measures and models we referred to, the 

most congruent between programs were chosen 
(Fig. 1), even if it meant accepting simplicity. All 
populations were assumed to evolve under neu-
trality and constant size with no recombination 
among loci. Accuracy was evaluated in terms of 
standardized deviation from theoretical expec-
tation (delta between observed and expected 
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value/expected value) and extent of variation 
(Coefficient of Variation, CV). Time efficiency 
was calculated as runtime in seconds. For the 
sake of uniformity, we performed 100 iterations 

for each simulation but the reader must bear in 
mind that runs in the order of thousands should 
be carried out to obtain satisfactory support to 
estimates. 

Fig. 1 - Graphic and parameter specifications of the simulated models.
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EXP. VALUES (VAR) ASHES EASYPOP

Model FiT1 mean mean
Heq 0.9804 (0.0032) 0.9862 (<0.0001) 0.9903 (<0.0001)
Computation time (sec) 50,148 52,950

Post processing program EXCEL ARLEQUIN 3.5

Post processing time (sec) 50 13,850

Model FiT2 mean mean

Heq 0.9524 (0.0002) 0.9510 (0.0012) 0.9537 (0.0117)

Computation time (sec) 732 135

Post processing program EXCEL ARLEQUIN 3.5
Post processing time (sec) 50 3,045

Model FiT3  mean mean
FST 0.1993 0.1845 (0.0062) 0.1742 (0.0053)
H 0.8179 0.8173 (0.0032) 0.8224 (0.0026)
Computation time (sec) 400 145

Post processing program EXCEL ARLEQUIN 3.5

Post processing time (sec) 100 160

EXP. VALUES BAYESSC SIMCOAL 1.0 MS FASTSIMCOAL

Model BiT1
Tn 19,998 19,669 19,514 19,647 19,737
(95%CI) (1,154-38,184) (10,567-28,461) (0-39,625) (954-38,519)
Computation time (sec) 29 228 35 298
Post processing program EXCEL - - -
Post processing time (sec) 190 - - -

Model BiT2 
Tn 1,998 2,258 1,924 2,229
(95%CI) (287-4,229) (362-3,486) ND (0-4,477)
Computation time (sec) 12 4 3
Post processing program EXCEL - -
Post processing time (sec) 190 - -

Model BiT3
Tn 19,998 22,906 19,471 21,157 20,403
(95%CI) (1,966-43,845) (9,043-29,899) (0-47,919) (0-43,930)
Computation time (sec) 32 245 40 280
Post processing program EXCEL - - -
Post processing time (sec) 190 - - -

Model BiT4 
Tn 19,998 20,642 18,479 20,302
(95%CI) (0-42,406) (9,622-27,336) ND (1,568-39,035)
Computation time (sec) 11 1363 9
Post processing program EXCEL - -
Post processing time (sec) 190 - -

Tab. 1 - Simulation parameters and outputs obtained modeling NRUP haplotypes by BiT and FiT 
programs (n/ Ne ratio, 1:1).
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FiT simulation tests
FiT1 models the evolution of large binary data 

(5M LC-grid) in one population under a muta-
tion/drift equilibrium. The expected probability 
at equilibrium under the Infinite-Allele Model 
(IAM) that two haplotypes chosen at random 
are different was estimated according to Kimura 
& Crow (1964) and Watterson (1974) and then 
compared with the mean haplotype diversity 
obtained with the stochastic algorithms imple-
mented in EASYPOP and ASHEs after a time 
span largely sufficient to reach the stabilization of 
diversity values (1,000 generations). FiT2 mirrors 
the previous model in the case of few STR data 
(10K LC-grid). The expected diversity at equilib-
rium under a Stepwise Mutation Model (SMM) 
was estimated according to Ohta & Kimura 
(1973) and Moran (1976). FiT3 models the evo-
lution of two equally-sized Wright-Fisher popula-
tions (5K LC binary grid) split from an ancestral 
population in absence of mutation and migration. 
Expected values of FST and H (haplotype diver-
sity) after 100 generations were calculated accord-
ing to Wright (1951) and Nei (1987).

BiT simulation tests
We performed a comparative test of the 

accuracy of the coalescent algorithms in the esti-
mation of a key parameter of anthropological 
research: the time since the most recent com-
mon ancestor (TMRCA). Under the standard 
coalescent model, where only one collision per 
generation is assumed, the expected TMRCA 
is given by 2Ne(1-1/n). When the sample size 
is much larger than the effective size, multiple 
simultaneous collisions need to be implemented 
to avoid an overestimation of the TMRCA.  
We tested the deviation of simulated values from 
the theoretical expectation under four simple 
models: BiT1, which reproduces basically the 
same conditions of FiT 1 (5M binary LC-grid); 
BiT2, which simulates the effect of drift in two 
pools of 10-locus Y-STR haplotypes of equal size 
1,000 (10K LC-grid) over 100 generations; BiT3 
follows the same divergence scheme as BiT2 but 
with BiT1 parameters; BiT4 mirrors BiT2 with 
a larger LC grid. The four models were simulated 

under the n-coalescent (MS, SIMCOAL 1.0), 
under a coalescence adjusted for multiple colli-
sions per generation (BAYESSC) and a sequential 
Markov coalescence  (FASTSIMCOAL), each 
time assuming the n/Ne ratio varying from 0.001 
to 8 (Fig. 2).

Simulation results

As a general rule, the mean values of the 
demographic parameters obtained both by 
FiT and BiT algorithms showed a fairly good 
adhesion to the theoretical expectations when 
the n/Ne ratio approaches one (see Tab. 1 and 
Fig. 2a). Estimates fluctuated between +25% 
and -10% of the expected value with the excep-
tion of TMRCAs obtained simulating by 
SIMCOAL 1.0. In the latter case, clear devia-
tions towards underestimation (up to -50% than 
expected) were observed for n<Ne and towards 
overestimation (up to +150% than expected) 
for n>Ne. As a consequence, the new released 
versions of SIMCOAL 1.0 are to be preferred 
(SIMCOAL 2, FASTSIMCOAL).

The pros and cons of the two kinds of 
approach were here confirmed: simulating FiT 
makes it possible to obtain higher accuracy but 
with low time efficiency (Tab. 1). Time consump-
tion depends on data size and on post-processing 
stages but one should expect, on average, to spend 
>100 times longer to simulate forward-in-time.

The stochastic process inherent to the coales-
cent induces high variation in TMRCA estimates 
from one simulation to the next (average CV 
around 0.50) but computation times are only a 
few seconds as long as the sample size remains 
low (Fig. 2b).

It’s worth noting that advanced versions 
(FASTSIMCOAL) of the same basic script 
(SIMCOAL 1.0) scarcely affect time-efficiency 
for large LC-grids of NRUPs and that large data 
(n/Ne 8:1, LC>20M) drive most applications to 
run failure, as would be expected from coalescent 
assumptions. 

It still remains to be demonstrated whether 
more biased trees are produced when much more 
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complex scenarios or  population parameters 
other than TMRCA are modeled.

Wakeley & Takahashi (2003) have measured 
the side-effects of modeling genealogies under the 
n-coalescent with sample sizes which are as large 
as or larger than the effective size (i.e. structured 
populations). They showed that inflated rates of 
singletons (namely, the polymorphisms found in 
only one sequence) are generated during the first 
backwards generations relative to model predictions 
that may erroneously mimic population growth or 
positive selection. This makes it harder to distin-
guish between adaptive and demographic effects by 
means of neutrality tests based on the shape of the 

allele frequency spectrum, or AFS (i.e. Tajima’s D, 
Fay & Wu’s H statistic, Fu & Li parameters). An 
AFS which is more skewed than expected under 
neutrality might yield misleading demographic 

inferences such as false positive results of bottle-
neck-shaped or admixed populations (Gabor et al., 
2004; Fu, 2006; Lohmueller et al., 2010).

Conclusions

The post-genomic era makes it paramount 
complement the increasing amounts of genetic 
data with in-silico tools able to model the 

Fig. 2 – a) Deviations from expected TMRCA values [(Tobs-Texp)/Texp] after simulating 100 itera-
tions under Bit1-4 using applications implementing coalescent models with varying n:Ne ratios, loci 
x chromosomes (LC) grids and theta values (θ). 
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network of interacting actors shaping biological 
variation. Hence, computationally efficient sim-
ulators that can explore complex demographic 
scenarios over large NRUP regions are likely to 
play an increasing role in modern evolutionary 
anthropology. With LC panels in the order of 
millions and multi-disciplinary prior knowledge 
becoming common place, hypothesis-driven and 
model-based approaches will require tools with 
increasing time-efficiency and flexibility. 

The high number of recent simulators, 
their growing specialization, their generally low 
friendliness, the lack of a directory where one 

can find out what exactly a program can and 
cannot do, might make first approaches to the 
world of simulation an hard task. Nonetheless, 
users should trust that, once they have become 
accustomed to some basic concepts, the quality 
of the products will depend on their own skills 
and inventiveness rather than on the ability to 
manipulate computational tools.

Coalescent-based approaches enable the 
production of huge amounts of samples in little 
time but sophisticated algorithms have to be 
coupled to partially compensate their limited 
flexibility. Time-forward approaches more closely 

Fig. 2 - b) Runtime (in seconds with AMD PhenomII X4 925 Processor 2.8 GHz and 4 GB RAM + 2 
Gb graphic memory under the WINDOWS7 64 bit operating system and under LINUX UBUNTU 10.10 
64 bit VirtualBox emulator for MS simulations) after simulating 100 iterations under Bit1-4 using 
applications implementing coalescent models with varying n:Ne ratios, loci x chromosomes (LC) 
grids and theta values (θ)
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fit the complexity underlying the evolution of real 
populations but demand intensive computations. 

To date, backward and forward strategies 
should be considered synergic rather than 
conflicting or alternative. When possible, it 
is advisable to check the adequacy of observed 
parameters to model assumptions under both 
time-simulation strategies. Their combined 
use has been recently applied to test human 
evolutionary models (Padhukasahasram et al., 
2008; Cyran & Myszor, 2008) and sometimes 
they have produced contrasting results.

Hopefully, the increasing charge of variable 
markers from population-scaled genomic surveys 
will be fully compensated by either, the rapid 
development of multi-core High Performance 
Computing (HPC) systems (Bader, 2004; Mode 
& Gallop, 2008; Kim & Wiehe, 2009), capable 
of managing data grids in the order of billions by 
dividing the main algorithm into a number of 
block units running simultaneously on different 
CPUs, or the implementation of the algorithms 
under graphic processing units (GPU) (see 
Owens et al., 2007, Suchard & Rambaut, 2009). 
As soon as complex simulation can be done in 
acceptable times, the accuracy and flexibility of 
FiT applications should be preferred.

For now, it is wise to make a personal 
evaluation each time of which is the 
best compromise between efficiency and 
flexibility, bearing in mind that all models are 
approximations. In any case, the higher the 
accuracy of competing models, the lower their 
overlapping and the closer the inferred history 
is to the real population history, whatever the 
simulation philosophy. This is why the most 
promising contribution to human evolutionary 
studies should rely on an original in-silico 
treatment of well-integrated sources of evidence 
(genetic and non-genetic) other than from the 
refinement of existing computational tools.
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Appendix - Features of seven applications which simulate NRUP haplotypes evolving under back-
ward-in-time (BiT) and forward-in-time (FiT) models. 

ABC	 Approximate Bayesian Computation MD	 Mismatch distribution
ASD	 Average square distance MFS	 Mutation Frequency Spectrum
DHS	 Haplotype sharing distance Mono	 Cross-platform framework
FST	 Wright’s Fixation index MPD	 Mean pairwise differences
FWC	 Weir & Cockerman’s FST Ne	 Population effective size
G2	 Pearson’s G2 Nm	 Number of migrants
GUI	 Graphic User Interface p	 Allele/haplotype frequency
H	 Nei’s haplotype diversity RST	 Shriver’s genetic distance
HS	 Mean haplotype diversity S	 number of segregating sites
HT	 Total haplotype diversity Sh	 Shannon’s index
IAM	 Infinite alleles model SMM	 Stepwise mutation model
IBD	 Isolation by distance SSM	 Stepping-stones model
IM	 Isolation with Migration model Tl	 Tree length
IsM	 Island model TMRCA	 Time since the most recent common ancestor
JC	 Jukes & Cantor model VarL	 Variance of alleles length
k	 Number of diverse alleles/haplotypes W-F	 Wright-Fisher model
K2p	 Kimura 2 parameter model WPD	 Walsh’s probability distribution
KurL	 Kurtosis of alleles length π 	 Nucleotide diversity
MCMC	 Markov chain Monte Carlo *imported from .txt files under a binary format

ASHES EASYPOP POPABC

Version 1.1 2.0.1 1.0

Language C# C C

Interface GUI Command-line ASCII-based menu Command-line

Operating system Windows, Unix (Mono) Windows, MacOSX Windows, Unix, MacOSX

License GNU GPL None GNU

Time model FiT FiT BiT

Reproductive model W-F W-F Exact-coalescent

Random N generator Knuth’s Random L’Ecuyer –

MCMC Yes Yes No

Inference framework – – Bayesian

Source Reference Merlitti & Tofanelli 2009 Balloux 2000 Lopes et al. 2009

URL ashes.codeplex.com www.unil.ch/dee www.reading.ac.uk/~sar05sal/software.htm

INPUTS
Max N populations 2 10,000 5

Loci x chromosomes unlimited unlimited unlimited

DNA sequences Yes* No Yes

STRs Yes Yes Yes

Binary data Yes Yes No

Linkage option Full Settable Settable

Haplotype diversity user-defined 2 states random

Growth rates Yes No No

Migration rates Yes No Yes

Migr rate distribution point point point

Migration model Splitting SSM,IsM,IBD IM
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Mutation rates Yes Yes Yes

Mut rate distribution point point normal,lognormal

Mutation models SMM/IAM SMM/KAM SMM/IAM

Historical events No No No

Non random sampling Settable No No

Max N Iterations infinite 999 infinite
Input Datafile Text (.txt)

ARLEQUIN (.arp)
EXCEL (.csv)

user-dependent Text (.len)
Convertible from GENEPOP 
or NEXUS files

Data generator Yes Yes No

Data download Yes No Yes

OUTPUTS

Haplotype format Yes No No

Data output .xml .dat .gen –

Variables/parameters .equ .txt .dat .mut

Within groups
DNA p,H,k,Ne – π,k,MFS,Sh,S

Others p,H,k,Ne – H,varL,kurL,Nm,k,Sh,S

Between groups
DNA FST,FWC,DHS – –

Others FST,FWC,DHS FST,HS,HT –

Genealogy No .pdg No

Real time output Yes No No
Post-processing R package, EXCEL FSTAT, 

ARLEQUIN,GENEPOP
R package, EXCEL

Summary statistics No No Yes

Model checking No No No

BAYESSC FASTSIMCOAL MS SIMCOAL

Version 1.0 1.1.2 Oct 2007 1.0

Language C++ C++ C++ C++

Interface ASCII menu ASCII menu Command-line ASCII menu

Operating system Windows,Unix,MacOSX Windows,Linux,MacOSX Unix,Linux,MacOSX Windows, Linux

License None None None None

Time model BiT BiT BiT BiT
Reproductive model Exact coalescent n-coalescent under a 

Markov sequential algorithm
n-coalescent n-coalescent

Random N generator Mersenne Twister – Specified in rand1.c –

MCMC Yes Yes No Yes
Inferential 
framework

Bayesian Bayesian – –

Source Reference
Anderson et al. 
2005

Excoffier & Foll 2011 Hudson 2002
Laval & Excoffier 
2004

URL www.stanford.edu/
group/hadlylab/ssc.
html

http://cmpg.unibe.ch/
software/fastsimcoal/

http://home.uchicago.
edu/rhudson1/source/
mksamples.html

http://cmpg.
unibe.ch/
software/simcoal/

Appendix (continued). 
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BAYESSC FASTSIMCOAL MS SIMCOAL

INPUTS
Max N populations unlimited unlimited unlimited unlimited

Loci x chromosomes unlimited unlimited unlimited unlimited

DNA sequences Yes Yes Yes Yes

STRs Yes Yes No Yes

Binary data Yes Yes Yes Yes

Linkage option Full Settable Settable Full

Haplotype diversity random random random random

Growth rates Yes Yes Yes Yes

Migration rates Yes Yes Yes Yes

Migr rate distribution point point point point

Migration model SSM,IsM SSM,IsM SSM,IsM SSM,IsM

Mutation rates Yes Yes Yes Yes

Mut rate distribution uniform, gamma uniform, gamma point uniform, gamma

Mutation models SMM/IAM/JC/K2p SMM/KAM/JC/K2p IAM SMM/KAM/JC/K2p

Historical events Yes Yes Yes Yes

Non random sampling No No No No

Max N Iterations infinite infinite infinite infinite

Input Datafile Text (.par) Text (.par) Command line Text (.par)

Data generator Yes Yes Yes Yes 

Data download No No No No

OUTPUTS
Haplotype format Yes Yes Yes Yes

Data output – .arp Screen display or .txt .arp .

Variables/parameters .csv .gen .gen .paup – .gen .paup

Within groups
π,Tajima’s D,MD TMRCA, MPD, Tl, Tajima’s D TMRCA, MPD, Tl, Tajima’s D TMRCA, MPD, Tl

H,k TMRCA, MPD, Tl TMRCA, MPD, Tl TMRCA, MPD, Tl

Between groups
FST,HS,HT,PD,TMRCA TMRCA, MPD, Tl TMRCA, MPD, Tl TMRCA, MPD, Tl

RST,G2,TMRCA TMRCA, MPD, Tl TMRCA, MPD, Tl TMRCA, MPD, Tl

Genealogy/Tree .trees .trees Screen display or .txt .trees

Real time output No No No No

Postprocessing R package, 
ARLEQUIN,PAUP, 
EXCEL,TREEVIEW

ARLEQUIN, 
ARLSUMSTAT

TEXTPAD, PHYLIP ARLEQUIN,PAUP,  
EXCEL,TREEVIEW

Summary statistics Yes Yes No No

Model checking No No No No

Appendix (continued). 




